Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure
نویسندگان
چکیده
منابع مشابه
Resonance fluorescence in photonic band gap waveguide architectures: Engineering the vacuum for all-optical switching
We describe the spectral characteristics of the radiation scattered by two-level atoms (quantum dots) driven by a strong external field, and coupled to a photonic crystal radiation reservoir. We show that in the presence of strong variations with the frequency of the photonic reservoir density of states, the atomic, Mollow, sideband components of the scattered intensity can be strongly modified...
متن کاملAll-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry.
We demonstrate all-optical switching action in a nonlinear photonic crystal cross-waveguide geometry with instantaneous Kerr nonlinearity, in which the transmission of a signal can be reversibly switched on and off by a control input. Our geometry accomplishes both spatial and spectral separation between the signal and the control in the nonlinear regime. The device occupies a small footprint o...
متن کاملPhotonic band structure of Sierpinski waveguide networks
The photonic band structure and transmission properties of Sierpinski fractal networks ~SNs! made of one-dimensional waveguides are studied with the generalized eigenfunction method. In the absence or presence of dissipation and in different exit situations, we have numerically calculated the transmission coefficient as a function of frequency in the range 0–500 MHz for the first four generatio...
متن کاملAll-optical Switching Structure Using Nonlinear Photonic Crystal Directional Coupler
In this paper, a new all-optical switching structure is proposed and analyzed. Switching is accomplished by embedded Kerr nonlinear rods in the coupling region of a photonic crystal directional coupler. We show that by modifying the supermodes dispersion curves, the switch length can be reduced 22% with respect to similar structures. Finite-Difference TimeDomain and Plane Wave Expansion methods...
متن کاملPhotonic band-gap waveguide microcavities: Monorails and air bridges
Photonic band-gap monorail and air-bridge waveguide microcavities, operating at the wavelength regime of 1550 nm, are fabricated using GaAs-based compound semiconductors. The fabrication process involves gas-source molecular beam epitaxy, electron-beam lithography, reactive ion etching, and thermal wet oxidation of Al0.93Ga0.07As.The fabrication of the air-bridge microcavity, in particular, als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 1998
ISSN: 1094-4087
DOI: 10.1364/oe.3.000028